1,528 research outputs found

    GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome

    Get PDF
    OBJECTIVE: To describe better the motor phenotype, molecular genetic features, and clinical course of GNAO1-related disease. METHODS: We reviewed clinical information, video recordings, and neuroimaging of a newly identified cohort of 7 patients with de novo missense and splice site GNAO1 mutations, detected by next-generation sequencing techniques. RESULTS: Patients first presented in early childhood (median age of presentation 10 months, range 0-48 months), with a wide range of clinical symptoms ranging from severe motor and cognitive impairment with marked choreoathetosis, self-injurious behavior, and epileptic encephalopathy to a milder phenotype, featuring moderate developmental delay associated with complex stereotypies, mainly facial dyskinesia and mild epilepsy. Hyperkinetic movements were often exacerbated by specific triggers, such as voluntary movement, intercurrent illnesses, emotion, and high ambient temperature, leading to hospital admissions. Most patients were resistant to drug intervention, although tetrabenazine was effective in partially controlling dyskinesia for 2/7 patients. Emergency deep brain stimulation (DBS) was life saving in 1 patient, resulting in immediate clinical benefit with complete cessation of violent hyperkinetic movements. Five patients had well-controlled epilepsy and 1 had drug-resistant seizures. Structural brain abnormalities, including mild cerebral atrophy and corpus callosum dysgenesis, were evident in 5 patients. One patient had a diffuse astrocytoma (WHO grade II), surgically removed at age 16. CONCLUSIONS: Our findings support the causative role of GNAO1 mutations in an expanded spectrum of early-onset epilepsy and movement disorders, frequently exacerbated by specific triggers and at times associated with self-injurious behavior. Tetrabenazine and DBS were the most useful treatments for dyskinesia

    Structural Analysis of Pathogenic Missense Mutations in GABRA2 and Identification of a Novel de Novo Variant in the Desensitization Gate

    Get PDF
    Background: Cys-loop receptors control neuronal excitability in the brain and their dysfunction results in numerous neurological disorders. Recently, six missense variants in GABRA2, a member of this family, have been associated with early infantile epileptic encephalopathy (EIEE). We identified a novel de novo missense variant in GABRA2 in a patient with EIEE and performed protein structural analysis of the seven variants. Methods: The novel variant was identified by trio whole-genome sequencing. We performed protein structural analysis of the seven variants, and compared them to previously reported pathogenic mutations at equivalent positions in other Cys-loop receptors. Additionally, we studied the distribution of disease-associated variants in the transmembrane helices of these proteins. Results: The seven variants are in the transmembrane domain, either close to the desensitization gate, the activation gate, or in inter-subunit interfaces. Six of them have pathogenic mutations at equivalent positions in other Cys-loop receptors, emphasizing the importance of these residues. Also, pathogenic mutations are more common in the pore-lining helix, consistent with this region being highly constrained for variation in control populations. Conclusion: Our study reports a novel pathogenic variant in GABRA2, characterizes the regions where pathogenic mutations are in the transmembrane helices, and underscores the value of considering sequence, evolutionary, and structural information as a strategy for variant interpretation of novel missense mutations.info:eu-repo/semantics/publishedVersio

    Detailed Retinal Imaging In Carriers Of Ocular Albinism

    Get PDF
    BACKGROUND: Albinism refers to a group of disorders primarily characterized by hypopigmentation. Affected individuals usually manifest both ocular and cutaneous features of the disease, but occasionally hair and skin pigmentation may appear normal. This is the case in ocular albinism, an X chromosome linked disorder resulting from mutation of GPR143. Female carriers may be recognized by a "mud-splatter" appearance in the peripheral retina. The macula is thought to be normal, however. METHODS: Obligate female carriers of pathogenic GPR143 alleles were recruited. Molecular confirmation of disease was performed only for atypical cases. Detailed retinal imaging was performed (colour fundus photography, optical coherence tomography, fundus autofluorescence. RESULTS: Eight individuals were ascertained. A novel GPR143 mutation was identified in one family (p.Gln328Ter). Foveal fundus autofluorescence was subjectively reduced in 6/6 patients imaged. A "tapetal-like" pattern of autofluorescence was visible at the macula in 3/6. Persistence of the inner retinal layers at the fovea was observed in 6/8 females. CONCLUSION: Female carriers of ocular albinism may manifest signs of retinal pigment epithelium mosaicism at the macula and the peripheral fundus. A tapetal-like reflex on fundus autofluorescence may be considered the macular correlate of "mud-splatter.

    SSBP1-Disease Update: Expanding the Genetic and Clinical Spectrum, Reporting Variable Penetrance and Confirming Recessive Inheritance

    Get PDF
    Purpose: To report novel genotypes and expand the phenotype spectrum of SSBP1-disease and explore potential disease mechanism. / Methods: Five families with previously unsolved optic atrophy and retinal dystrophy underwent whole genome sequencing as part of the National Institute for Health Research BioResource Rare-Diseases and the UK's 100,000 Genomes Project. In silico analysis and protein modelling was performed on the identified variants. Deep phenotyping including retinal imaging and International Society for Clinical Electrophysiology of Vision standard visual electrophysiology was performed. / Results: Seven individuals from five unrelated families with bilateral optic atrophy and/or retinal dystrophy with extraocular signs and symptoms in some are described. In total, 6 SSBP1 variants were identified including the previously unreported variants: c.151A>G, p.(Lys51Glu), c.335G>A p.(Gly112Glu), and c.380G>A, p.(Arg127Gln). One individual was found to carry biallelic variants (c.380G>A p.(Arg127Gln); c.394A>G p.(Ile132Val)) associated with likely autosomal recessive SSBP1-disease. In silico analysis predicted all variants to be pathogenic and Three-dimensional protein modelling suggested possible disease mechanisms via decreased single-stranded DNA binding affinity or impaired higher structure formation. / Conclusions: SSBP1 is essential for mitochondrial DNA replication and maintenance, with defects leading to a spectrum of disease that includes optic atrophy and/or retinal dystrophy, occurring with or without extraocular features. This study provides evidence of intrafamilial variability and confirms the existence of an autosomal recessive inheritance in SSBP1-disease consequent upon a previously unreported genotype

    Assessment of the incorporation of CNV surveillance into gene panel next-generation sequencing testing for inherited retinal diseases.

    Get PDF
    BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations

    The psychiatric phenotypes of 1q21 distal deletion and duplication

    Get PDF
    Copy number variants are amongst the most highly penetrant risk factors for psychopathology and neurodevelopmental deficits, but little information about the detailed clinical phenotype associated with particular variants is available. We present the largest study of the microdeletion and -duplication at the distal 1q21 locus, which has been associated with schizophrenia and intellectual disability, in order to investigate the range of psychiatric phenotypes. Clinical and cognitive data from 68 deletion and 55 duplication carriers were analysed with logistic regression analysis to compare frequencies of mental disorders between carrier groups and controls, and linear mixed models to compare quantitative phenotypes. Both children and adults with copy number variants at 1q21 had high frequencies of psychopathology. In the children, neurodevelopmental disorders were most prominent (56% for deletion, 68% for duplication carriers). Adults had increased prevalence of mood (35% for deletion [OR = 6.6 (95% CI: 1.4-40.1)], 55% for duplication carriers [8.3 (1.4-55.5)]) and anxiety disorders (24% [1.8 (0.4-8.4)] and 55% [10.0 (1.9-71.2)]). The adult group, which included mainly genetically affected parents of probands, had an IQ in the normal range. These results confirm high prevalence of neurodevelopmental disorders associated with CNVs at 1q21 but also reveal high prevalence of mood and anxiety disorders in a high-functioning adult group with these CNVs. Because carriers of neurodevelopmental CNVs who show relevant psychopathology but no major cognitive impairment are not currently routinely receiving clinical genetic services widening of genetic testing in psychiatry may be considered

    The psychiatric phenotypes of 1q21 distal deletion and duplication

    Get PDF
    Copy number variants are amongst the most highly penetrant risk factors for psychopathology and neurodevelopmental deficits, but little information about the detailed clinical phenotype associated with particular variants is available. We present the largest study of the microdeletion and -duplication at the distal 1q21 locus, which has been associated with schizophrenia and intellectual disability, in order to investigate the range of psychiatric phenotypes. Clinical and cognitive data from 68 deletion and 55 duplication carriers were analysed with logistic regression analysis to compare frequencies of mental disorders between carrier groups and controls, and linear mixed models to compare quantitative phenotypes. Both children and adults with copy number variants at 1q21 had high frequencies of psychopathology. In the children, neurodevelopmental disorders were most prominent (56% for deletion, 68% for duplication carriers). Adults had increased prevalence of mood (35% for deletion [OR = 6.6 (95% CI: 1.4-40.1)], 55% for duplication carriers [8.3 (1.4-55.5)]) and anxiety disorders (24% [1.8 (0.4-8.4)] and 55% [10.0 (1.9-71.2)]). The adult group, which included mainly genetically affected parents of probands, had an IQ in the normal range. These results confirm high prevalence of neurodevelopmental disorders associated with CNVs at 1q21 but also reveal high prevalence of mood and anxiety disorders in a high-functioning adult group with these CNVs. Because carriers of neurodevelopmental CNVs who show relevant psychopathology but no major cognitive impairment are not currently routinely receiving clinical genetic services widening of genetic testing in psychiatry may be considered

    Vitamin A deficiency due to bi-allelic mutation of RBP4: There's more to it than meets the eye

    Get PDF
    Vitamin A deficiency is the leading cause of preventable blindness in children worldwide and results in a well-recognized ocular phenotype. Herein we describe a patient presenting to the eye clinic with a retinal dystrophy and ocular colobomata. This combination of clinical signs and consanguineous pedigree structure suggested a genetic basis for the disease, a hypothesis that was tested using whole genome sequencing. Bi-allelic mutations in RBP4 were identified (c.248+1G>A), consistent with a diagnosis of inherited vitamin A deficiency. We describe a constellation of signs that appear to be characteristic for this disease, increasing clinical awareness of this rare condition

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
    • …
    corecore